

Using Electronic Health Records Data to Identify Incarcerated Persons at Increased Risk for HIV Acquisition Session: 1213 Presenter: Alex Treacher, PhD

Continuum 2024 · June 9-11, 2024 · Puerto Rico

Team and collaborators

Development and successful deployment of a high-performance machine learning models requires an interdisciplinary team to maximize both performance, and clinical impact of a predictive model.

UT Southwestern Medical Center

Ank Nijhawan, M.D. Timothy Hogan, PhD Robin Higashi, PhD Song Zhang, PhD Brynn Torres, MPH

Douglas Krakower, M.D. Julia Marcus, PhD, MPH Jackie Naeem, M.D. Alex Treacher, PhD Reshma Suresh M.A/M.S

Kenneth Dobbs

NIH Funding: R01 MH 129185

Background/Introduction

#CONTINUUM2024

Incarcerated persons experience disproportionately high rates of HIV acquisition.

Development of tools to help identify incarcerated individuals with elevated HIV risk can optimize allocation of resources for testing, counseling, and prevention.

We developed a predictive risk model to estimate individuals' future HIV risk using electronic health records from the 8th largest US jail.

Dataset and Processing

Final dataset:
Demographic
Historical
Medical data
Includes data up until 3 days after start of latest incarceration, or incarceration prior to HIV+ diagnosis (when applicable).

Modeling Approach

ML Processing:

Normalization

Augmentation

KNN imputation

#CONTINUUM2024

Goal: Create an optimized classification model to predict patients with a future HIV+ diagnosis, and use the prediction probability to estimate risk.

Data split: Stratified Multiholdout 10-fold cross validation

End to end hyperparameter optimization

 Optimized parameters for processing and model development using Bayesian optimization (TPE)

Model development:

- Model selection: Logistic regression, Random forest,
- Support vector machine/classifier
- Model parameters e.g. regularization

Model analysis:

- Final model
 performance
- Model calibration
- Feature importance (PFI)
- Risk stratification

Results: Model Performance

#CONTINUUM2024

4

Test Performance

	-				
		AUROC		.702	
	Bal Acc Sens Spec			.655 .687 .624	
	NEG LIV	18763		12022	
Doc UIV	144			342	
	Neg HIV			Pos HIV	

Risk

% Pop. High Risk	Bal Acc	Sens	Spec
5	.580	.208	.952
20	.672	.538	.805
50	.668	.831	.505

Results: HPO and Feature Importance

Feature Importance (PFI)

Hyperparameter Optimization (HPO)

Future Work

Evaluation of performance on newly available data

Develop/build deployment pipelines

Prospective implementation to evaluate performance in identifying people entering the jail who need HIV and STI testing and may be potential PrEP candidates

Integrate features available from Parkland Health EHR

Summary

- Created HIV dataset/cohort from the 8th largest jail in the US.
- To our knowledge, this is the first HIV prediction model developed for an incarcerated population.
- Predictive performance with good calibration is likely in a range that can improve efficiency for HIV prevention resources in jails.
- Limitations of the performance are likely due to limited information from jail EHR.
- Given the large population of individuals at risk for HIV who pass through US jails, the potential population-level impact of a jail HIV prediction model is substantial and warrants prospective evaluation.

