

Is a simple self-rating or visual analogue scale more accurate than prescription refill data, as an indicator of non-adherence in a resource-limited setting in South Africa?

> <u>Meyer JC</u>, Summers B, Lentsoane PP, Mokoka MV, Nyingwa J, Teffu SM

> 7th International Conference on HIV Treatment and Prevention Adherence, Miami

> > 3-5 June 2012

Department of Pharmacy

University of Limpopo (Medunsa Campus) Email: hannelie.meyer@gmail.com hannelie.meyer@ul.ac.za

INTRODUCTION & BACKGROUND

- Adherence important predictor of antiretroviral treatment (ART) success
- Methods to measure adherence
 - Each method has advantages & limitations
 - No gold standard to measure adherence

(Chesney, 2006; Henry, 2011)

- Measures of adherence
 - Patient self-report
 - Dispensing-based (refill)

Associated with clinical outcomes

(Berg et al., 2010; Bisson et al., 2008; Chalker et al., 2010; Henry, 2011; Nachega et al., 2006; Ross-Degnan et al., 2010)

INTRODUCTION & BACKGROUND (2)

- Valid, inexpensive, rapid assessment of adherence
 - Essential to monitor ART in resource-limited settings
- Functional computer systems
 - Not always available in resource-limited settings to facilitate reliable and easily-traceable pharmacy refill data

A Challenges:

- Rapid scaling-up of ART
- Down-referral of stabilised patients to nurse-managed clinics
- Nurse-initiated ART

L

Essential to identify validated methods to measure and monitor adherence, and predict clinical outcomes

OBJECTIVES

- * To measure adherence for patients attending Tshepang ART Clinic at Dr George Mukhari Hospital using three different methods
 - Self-report 6-level rating scale
 - Self-report 'visual analogue scale' (VAS)
 - Prescription refill data
- * To examine agreement between adherence measures and association with clinical markers
- * To validate the adherence measures against standards for treatment failure

METHOD: Study site

METHOD Target population & ethics

* Target population

- Live in surrounding semi-urban and rural areas
- Obtain ART from Tshepang Clinic at 4-weekly intervals

Inclusion criteria

- HIV positive adults ≥18 years
- On ART for at least 6 months
- Setswana or English speaking

Ethical considerations

- Medunsa Campus Research and Ethics Committee
- CEO Dr George Mukhari hospital Clinic Head of Tshepang Clinic
- Written consent from patients

Permission to conduct the study

METHOD Data collection

» Data collection

- Period of 4 weeks in June 2011
- Four final year BPharm students

» Data collection training

Standardise data collection and interview techniques

A Data collection instruments

- Structured questionnaire in English and Setswana
- Retrospective dispensing form

Pilot study

- Feasibility of study
- Test data collection instruments

METHOD

Study design: Cross-sectional study

Patients attending clinic for repeat prescriptions: n=253 (convenience sample, ±20 patients/day, 3 days/week)

METHOD

Adherence measures: Self-report past 4 weeks

Prospective: 'Visual analogue scale' (VAS)

Adapted from: Ereng, 2011; Polejack, 2007

Prospective: 6-item rating scale

METHOD

Adherence measures: Prescription refill past 6 months

Retrospective: Prescription refill

	Date ARVs dispensed	Number of days ARVs dispensed
ART initiation		
Visit 1 (index visit)		
Visit 2	1	
Visit 3		
Visit 4		
Visit 5		
Visit 6		

Average % of days covered by ARVs over 6 months period

METHOD Data entry & analysis

- **▶ Data entry:** Microsoft Office Excel[™] spread sheets
 - Cross-checked for correctness and completeness
- **A Data analysis:** IMB SPSS Statistics 20[®]
 - Evaluation of adherence measures
 - Gold standard: Virologic (VL>400 copies/ml) and immunologic (CD4<100 cells/µL) treatment failure
 - Responses to rating scale: converted to numbers
 - Numbers (%): converted to categories

Rating	VAS	Refill	Adherence cut-off
Excellent	95-100%	95-100%	
Very good	90 %	85<95%	< 95 %
Good	80%	75<85%	<85%
Fair	70 %	65<75%	<75%
Poor	60%	55<65%	
Very poor	50%	<55%	

RESULTS AND DISCUSSION

Demographic information: Age and gender

Mean age: 39.9 (SD±10.8) years; Median age: 38.2 years

Demographic information: Educational level

Demographic information: Employment

Unemployment rate in South Africa = 25% (Statistics SA, 2011)

Antiretroviral treatment (ART)

Self-report past 4 weeks Distribution of patients by adherence % score

Refill data past 6 months Distribution of patients by adherence % score

Adherence measures compared % of patients per category of adherence

Adherence measures compared for different cut-off points % of patients per category of adherence

Adherence cut-off		Refill (n=253)	Refill VAS (n=253) (n=253)	
≥95%	Excellent	53% <i>P</i> =0.1	45% 3050	17%
≥85%	Excellent & very good	9 1%	69 %	47%
≥75%	Excellent, very good & good	97 %	83%	83%

Fisher's Exact test

Adherence measures compared

Mean adherence score (%)

₹	Measure	Measure	Mean diff	SE	Ρ	95 %	% CI
ANO se ison	Refill	VAS	7.3881	1.0405	.000	4.893	9.883
/ay / irwi ıpar		Rating	9.6213	0.8324	.000	7.627	11.616
e-W Pa	VAS	Refill	-7.3881	1.0405	.000	-9.883	-4.893
0 U		Rating	2.2332	1.1342	.141	485	4.951

Adherence (% score): Association between measures

		Rating	VAS	Refill
Rating	rho	1	0.632	0.113
	P (2-tailed)	-	<0.001	0.073
	n	253	253	253
VAS	rho		1	0.048
	P (2-tailed)		-	0.45
	n		253	253
Refill	rho			1
	P (2-tailed)			-
	n			253

Spearman's Rank correlation: significant at the 0.01 level (2-tailed)

Clinical markers: Viral load (VL)

	Time on ART (months)				Total		
	6-24 months		25-48 months		>48 months		Iotai
VL≤400 copies/ml	83 (80%)		16 (42%)		20 (48%)		119 (65%)
VL>400 copies/ml	21 (20%)	34%	22 (58%)	34%	22 (52%)	32%	65 (35%)
Total	104		38		42		184

Percentage of patients with ≥95% adherence by time on ART (n=184)

Clinical markers: CD4 count (cells/µl)

Association of adherence measures with clinical markers

		Rating	VAS	Refill
CD4	rho	0.323	0.222	0.021
count	P (2-tailed)	<0.001	0.004	0.794
	n	164	164	164
Change in CD4 Viral load	rho	0.247	0.231	-0.046
	P (2-tailed)	0.003	0.005	0.583
	n	144	144	144
	rho	-0.333	-0.163	-0.154
	P (2-tailed)	<0.001	0.027	0.036
	n	184	184	184

Spearman's Rank correlation: significant at the 0.01 level (2-tailed)

Sensitivity and specificity of adherence measures for virologic failure (VL>400 copies/ml) at different adherence cut-offs

Adherence cut-off	Measure (n=164)	Sensitivity (95% CI)	Specificity (95% CI)	PPV (95% CI)	NPV (95% CI)
	Refill	55% (43-67)	57% (48-66)	41% (32-52)	70% (60-78)
95%	VAS	66% (54-76)	52% (43-61)	43% (34-53)	74% (64-82)
	Rating	92% (83-97)	26 % (19-35)	41% (33-49)	87% (71-94)
85%	Refill	15% (9-25)	94% (88-97)	59 % (36-78)	67% (60-74)
	VAS	46% (35-58)	73% (65-80)	48% (36-61)	71% (63-79)
	Rating	71% (59-80)	61% (52-69)	50% (40-59)	79 % (70-86)
75%	Refill	6 % (2-15)	98 % (93-99)	57% (25-84)	66% (58-72)
	VAS	29 % (20-41)	87% (79-92)	54% (38-70)	69 % (61-76)
	Rating	37% (26-49)	94% (88-97)	77% (60-89)	73% (66-80)

PPV: Positive predictive value; NPV: Negative predictive value

Sensitivity and specificity of adherence measures for virologic failure

Sensitivity and specificity of adherence measures for immunologic failure (CD4<100 cells/ml) at different adherence cut-offs

Adherence cut-off	Measure (n=164)	Sensitivity (95% CI)	Specificity (95% CI)	PPV (95% CI)	NPV (95% CI)
	Refill	44% (26-65)	54% (46-62)	13% (7-23)	86% (77-91)
95%	VAS	83% (63-93)	55% (46-63)	23% (15-33)	95% (88-98)
	Rating	96% (79-99)	25% (18-33)	17% (12-25)	97% (86-100)
	Refill	17% (7-31)	92% (87-96)	27% (11-52)	87% (81-92)
85%	VAS	57% (37-74)	76% (68-82)	28% (17-42)	92% (85-95)
	Rating	83% (63-93)	56% (48-64)	24% (16-34)	95% (88-98)
	Refill	9% (2-27)	98% (94-99)	40% (12-77)	87% (81-91)
75%	VAS	39 % (22-59)	88% (82-92)	35% (19-54)	90% (84-94)
	Rating	44% (26-63)	89 % (83-93)	40% (23-59)	91 % (85-95)

PPV: Positive predictive value; NPV: Negative predictive value

Sensitivity and specificity of adherence measures for immunologic failure

CONCLUSIONS

- Prescription refill data
 - Showed the lowest sensitivity to detect possible virologic and immunologic failure
 - Sensitivity decreased with lower cut-off points for adherence
- Rating scale
 - Showed the highest sensitivity to detect patients with possible virologic failure at 95% cut-off for nonadherence
- Rating scale and the VAS as single measures
 - 'Fairly' accurate to discriminate between patients with possible virologic or immunologic failure, and those not

RECOMMENDATIONS

- Rating scale and pictorial VAS are suited to screen patients in a resource-limited setting with
 - insufficient human resources for time-consuming adherence assessments
 - unavailability of computer systems to accurately calculate refill adherence

Targeted interventions for patients at risk Monitoring of clinical markers could be limited to patients at risk

- Further data analysis and studies in larger population to validate measures
 - If used in combination (models)
 - For specific patient groups (e.g. time on ART, regimen)
 - In repeated measurements of adherence

LIMITATIONS OF THE STUDY

- A Different regimens may require different minimum levels of adherence
 - ART regimen was not factored in the analysis
- Results could have been biased by
 - lag times between VL and CD4 test results and adherence measures
 - medication left over from previous months (refill data)
 - interpretation of self-report measures
- Incomplete patient records and limited clinical data
 - Small sample size

ACKNOWLEDGEMENTS

- Patients at Tshepang clinic for their willingness to participate in the study
- Staff of Tshepang Clinic for their willingness to assist us in this research project
- Department of Pharmacy, University of Limpopo, Medunsa Campus for financial support
- Professor H Schoeman for advice on the data analysis

- Berg, K.M., Wilson, I.B., Li, X. & Arnsten, J.H. 2010. Comparison of Antiretroviral Adherence Questions. AIDS Behav. A vailable at: www.ncbi.nlm.nih.gov/pubmed/21181252 Accessed: 6 March 2011.
- Bisson, G.P., Gross, R., Bellamy, S., Chittams, J., HIslop, M., Regensberg, L., Frank, I., Maartens, G. & Nachega, J.B. 2008. Pharmacy refill adherence compared with CD4 count changes for monitoring HIV-infected adults on Antiretroviral Therapy. PLoS Medicine, 5 (5):e109. Available at: www.plosmedicine.org Accessed: 13 January 2011.
- Chalker JC, Andualem T, Gitau LN, Ntaganira J, Obua C, Tadeg H, Waak P & Ross-Degnan D. 2010. Measuring adherence to antiretroviral treatment in resource-poor settings: The feasibility of collecting routine data for key indicators. BMC Health Services Research, 10:43
- Chesney, M.A. 2006. The Elusive Gold Standard: Future Perspectives for HIV Adherence Assessment and Intervention. JAIDS, 43(Suppl. 1):S149-S155.
- Henry, K. 2011. What's the best way to measure ART adherence? AIDS Clinical Care, 23(3). Available from: http://www.medscape.com/viewarticle/738362 (Accessed: 5 April 2011).
- Nachega, J.B., Hislop, M., Dowdy, D.W., Lo, M., Omer, B.B., Regensberg, L., Chaisson, R.E. & Maartens, G. 2006. Adherence to Highly Active Antiretroviral Therapy Assessed by Pharmacy Claims Predicts Survival in HIV-Infected South African Adults. J Acquir Immune Defic Syndr, 43:78-84.
- Ross-Degnan, D., Pierre-Jacques, M., Zhang, F., Tadeg, H., Gitau, L., Ntaganira, J., Balikuddembe, R., Chalker, J. & Wagner, A.K. 2010. Measuring Adherence to Antiretroviral Treatment in Resource-Poor Settings: The Clinical Validity of Key Indicators. BMS Health Services Research, 10(42): 1-10.
- Statistics South Africa 2011. Main key indicators. Available from: http://www.statssa.gov.za/keyindicators/keyindicators.asp (Accessed: 21 May 2012)

