Cash versus food assistance to improve adherence to antiretroviral therapy among HIV-infected adults in Tanzania: a randomized trial

Sandra McCoy, Prosper Njau, Carolyn Fahey, Nancy Czaicki, Ntuli Kapologwe, Suneetha Kadiyala, William Dow, Nicholas Jewell, and Nancy Padian

June 5, 2017
12th International Conference on HIV Treatment and Prevention Adherence
Economic Barriers to ART Adherence

- Economic factors increasingly recognized as barriers to antiretroviral therapy (ART) adherence & retention in care

- Food insecurity (FI) is one dimension of economic wellbeing
 - FI is the lack of secure access to sufficient amounts of safe and nutritious food for normal growth and development and an active and healthy life
 - In sub-Saharan Africa, 220 million (23%) people are undernourished

FI Associated with Poor ART Adherence

Source: Singer AW, Weiser SD, McCoy SI. AIDS Behav. 2015 Aug;19(8):1510-26
Limited evidence that food aid programs improve ART adherence in LMIC

• Few intervention studies of food aid for people living with HIV infection (PLHIV) in low and middle-income countries
 - (Cantrell et al., 2008; Serrano et al., 2010; Tirivayi et al., 2012; Posse et al., 2013; Martinez et al., 2014)

• Some studies report improved ART adherence
 - For example, in Zambia, food supplementation increased the percent of clients with ≥95% ART adherence after 1 year (70% vs. 48%, $RR_a = 1.5$, 95% CI: 1.2, 1.8) (Cantrell et al., 2008)

• Lack of rigorous evaluations limits conclusions

Could cash be as effective or more effective than food aid for improving ART adherence?

• Long-standing debate about cash versus in-kind assistance
 - Cash is as good or better than many forms of aid for poverty alleviation
 (Blattman & Niehaus, 2014)
 - Cash gives freedom of choice, is cheaper to distribute, and in some settings
 cash may be preferred over food assistance*(Gentilini 2016)*

• Among PLHIV, cash transfers can improve ART adherence and
 retention in care *(Galárraga et al., 2013; El-Sadr et al., 2015, Yotebieng et al., 2016)*
 - Few studies conducted in sub-Saharan Africa
Study Objective

Evaluate the effectiveness of short-term cash and food assistance to mitigate food insecurity and improve adherence to antiretroviral therapy and retention in care among people living with HIV infection in Tanzania

• **Protocol:** McCoy SI et al. BMC Infectious Diseases 2015;15:490.

• **Trial Registration:** Clinicaltrials.gov, NCT01957917

• **Ethical Approvals:** National Institute for Medical Research and UC Berkeley
Study Setting & Population

- Three HIV primary care clinics in Shinyanga, Tanzania

Inclusion criteria:
1. ≥18 years
2. living with HIV infection
3. food insecure, ascertained by the Household Hunger Scale (*FANTA 2011*)
4. Initiated ART ≤90 days before enrollment

Exclusion criteria:
1. Severe malnourishment (BMI<16 kg/m²)
Intervention Descriptions

Nutrition Assessment and Counseling (NAC)

Comparison arm:
- Standard-of-care, including NAC

1. ≤6 consecutive months of support
2. Conditional on attending scheduled visits
3. Patients were counseled to “use the cash/food as you wish to help you with your health.”

Monthly cash transfer
• 22,500 TZS (~US $11)

Monthly basket (~$11) of locally procured food:
• 12kg maize flour
• 3kg beans
• 3kg groundnuts
Outcomes

Primary Outcome:
- ART adherence at 6 months (*end of intervention period*)
 - Measured with the *medication possession ratio* (MPR), the proportion of days that an individual is in possession of ≥1 ART dose
 - MPR and MPR ≥95%

Secondary Outcomes:
- MPR ≥95% at 12 months (*6 months after the intervention period*)
- Loss to follow-up (LTFU): ≥90 days since the last scheduled visit
Trial Profile

921 screened

116 ineligible:
- 102 not eligible
- 14 did not consent

805 randomized

- 113 assigned to NAC only (comparison condition)
 - 1 excluded
 - died before first visit
 - 112 in ITT analysis on primary outcomes

- 347 assigned to NAC plus cash transfers
 - 1 excluded
 - transferred same day
 - 346 in ITT analysis on primary outcomes

- 345 assigned to NAC plus food assistance
 - 3 excluded
 - 1 opted out at 1st visit
 - 1 transferred same day
 - 1 missing all records
 - 342 in ITT analysis on primary outcomes
Participant Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Total (N=800)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (%)</td>
</tr>
<tr>
<td>Sociodemographic Characteristics</td>
<td></td>
</tr>
<tr>
<td>Age (median, IQR)</td>
<td>35 (29–43)</td>
</tr>
<tr>
<td>Female</td>
<td>509 (64%)</td>
</tr>
<tr>
<td>No formal education</td>
<td>194 (24%)</td>
</tr>
<tr>
<td>Swahili is primary language</td>
<td>489 (61%)</td>
</tr>
<tr>
<td>Farmer (primary occupation)</td>
<td>405 (51%)</td>
</tr>
<tr>
<td>Severe household hungerb</td>
<td>328 (41%)</td>
</tr>
<tr>
<td>Minutes to clinic (median, IQR)</td>
<td>30 (20–60)</td>
</tr>
<tr>
<td>Clinical Characteristics</td>
<td></td>
</tr>
<tr>
<td>BMI (median, IQR)c</td>
<td>21.0 (19.1–23.0)</td>
</tr>
<tr>
<td>CD4 (per mm3, median, IQR)d</td>
<td>200 (101–299)</td>
</tr>
<tr>
<td>WHO Clinical Stage 3-4</td>
<td>453 (57%)</td>
</tr>
</tbody>
</table>

NAC: nutrition assessment and counseling; BMI: Body mass index; ART: antiretroviral therapy; IQR: interquartile range

a. Chi-squared test for categorical variables and Kruskal-Wallis test of medians for continuous variables.
b. Household Hunger Scale
c. 772 participants had BMI available.
d. 637 participants had CD4 available.
ITT Results: ART Adherence (6 mo)

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Overall (n=800)</th>
<th>Study group</th>
<th>Between-group difference* (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NAC only (n=112)</td>
<td>NAC + Cash (n=346)</td>
<td>NAC + Food (n=342)</td>
</tr>
<tr>
<td>Adherence to ART (6 months: end of intervention period)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPR≥95%b</td>
<td>79.5%</td>
<td>63.4%</td>
<td>85.0%</td>
</tr>
<tr>
<td>MPRc</td>
<td>92.8%</td>
<td>85.4%</td>
<td>95.1%</td>
</tr>
</tbody>
</table>

ART: antiretroviral therapy; MPR: medication possession ratio; CI: confidence interval
* P<0.05 **P<0.01
a. Unadjusted intent-to-treat estimate using a Wald test and Bonferroni’s correction for multiple comparisons.
b. MPR is the proportion of time an individual is in possession of ≥1 ART dose. MPR≥95% is the proportion of patients with MPR ≥95% during the 0-6 or 0-12 month interval.
c. The proportion of time an individual is in possession of ≥1 ART dose

ITT Results: ART Adherence (12 mo)

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Overall</th>
<th>NAC only</th>
<th>NAC + Cash</th>
<th>NAC + Food</th>
<th>Between-group differencea (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adherence to ART (6 months: end of intervention period)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPR≥95%b</td>
<td>79.5%</td>
<td>63.4%</td>
<td>85.0%</td>
<td>79.2%</td>
<td>21.6 (9.8, 33.4)**</td>
</tr>
<tr>
<td>MPRc</td>
<td>92.8%</td>
<td>85.4%</td>
<td>95.1%</td>
<td>92.9%</td>
<td>9.7 (5.6, 13.8)**</td>
</tr>
<tr>
<td>Adherence to ART (12 months: 6 months after intervention has ended)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPR≥95%b</td>
<td>67.5%</td>
<td>55.4%</td>
<td>74.9%</td>
<td>64.0%</td>
<td>19.5 (6.9, 32.1)**</td>
</tr>
<tr>
<td>MPRc</td>
<td>90.1%</td>
<td>83.3%</td>
<td>93.0%</td>
<td>89.5%</td>
<td>9.7 (4.9, 14.5)**</td>
</tr>
</tbody>
</table>

ART: antiretroviral therapy; **MPR**: medication possession ratio; **CI**: confidence interval

* P<0.05 **P<0.01

a. Unadjusted intent-to-treat estimate using a Wald test and Bonferroni’s correction for multiple comparisons.
b. MPR is the proportion of time an individual is in possession of ≥1 ART dose. MPR≥95% is the proportion of patients with MPR ≥95% during the 0-6 or 0-12 month interval.
c. The proportion of time an individual is in possession of ≥1 ART dose

ITT Results: Loss to Follow-up

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Overall (n=800)</th>
<th>Study group</th>
<th>Between-group difference<sup>a</sup> (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Overall (n=800)</td>
<td>Study group</td>
<td>Between-group difference<sup>a</sup> (95% CI)</td>
</tr>
<tr>
<td></td>
<td>Overall (n=800)</td>
<td>Study group</td>
<td>Between-group difference<sup>a</sup> (95% CI)</td>
</tr>
<tr>
<td>NAC only</td>
<td>NAC + Cash</td>
<td>NAC + Food</td>
<td>NAC + Cash vs. NAC only</td>
</tr>
<tr>
<td>(n=112)</td>
<td>(n=346)</td>
<td>(n=342)</td>
<td>NAC + Food vs. NAC only</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NAC + Cash vs. NAC + Food</td>
</tr>
<tr>
<td>LTFU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss to follow-up, 6 mo<sup>b</sup></td>
<td>2.6%</td>
<td>10.9%</td>
<td>-10.0 (-17.3, -2.8)**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.9%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5%</td>
<td></td>
</tr>
<tr>
<td>Loss to follow-up, 12 mo<sup>b</sup></td>
<td>9.5%</td>
<td>17.3%</td>
<td>-10.6 (-20.1, -1.1)*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.7%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.7%</td>
<td></td>
</tr>
</tbody>
</table>

ART: antiretroviral therapy; **MPR**: medication possession ratio; **CI**: confidence interval

^a Unadjusted intent-to-treat estimate using a Wald test and Bonferroni’s correction for multiple comparisons.

^b The proportion of patients with no evidence of HIV primary care at 6 months, defined not seen for at least 90 days since the last appointment scheduled prior to 6 months.

Kaplan-Meier curve of the proportion of participants in care over time, stratified by study arm (nutrition assessment and counseling (NAC) plus cash or food transfers)a

a The proportion of participants retained in care was defined as one minus the probability of LTFU (\(\geq 3\) months since the last scheduled visit). By definition, follow-up time between 9 and 12 months could not be classified as LTFU and is therefore not on the graph.
Pathways to Better Adherence

In-depth interviews revealed that the incentives acted through three primary pathways to increase adherence:

1. Incentives addressed competing needs and offset opportunity costs
2. They increased motivation via a price effect, and
3. They alleviated stress and anxiety, a mental health pathway supported by conceptual models and empirical data (Weiser SD, 2011; Nel A, 2011)

Limitations

• Viral load not measured
 - MPR is highly correlated with short-term viral suppression
 (*McMahon et al., 2011; Hong et al., 2013*)

• Potential for missing data from paper-based facility registers
 - Unlikely that missing data would be differential by study arm
 - Would likely result in *underestimates* of adherence and retention

• Study powered to determine whether cash assistance was non-inferior
to food assistance; not to detect small differences between the two interventions
Discussion (1)

• Short-term cash and food transfers increase 6-month adherence and retention among food insecure treatment initiates vs. standard of care
 - The effects are most pronounced in the first 3 months
 - Many effects maintained at 12 months, 6 months after the incentive period
 - Demonstrates potential of short-term interventions at treatment initiation

• For some outcomes, cash was superior to food assistance. Cash was preferred by participants and was easier and cheaper to implement, warranting further evaluation.
Discussion (2)

LIVELIHOOD STRATEGIES

PROMOTION
Asset & income growth, consumption improvement
- Enterprise development
- Microcredit
- Value chains

PROTECTION
Asset protection & consumption smoothing
- Group savings and loans
- Micro-insurance
- Household food production

PROVISION
Asset recovery & consumption support
- Cash transfers
- Savings
- Food and labor schemes

Source: LIFT II Livelihood and Food Security Conceptual Framework, FHI 360
Acknowledgements

UC Berkeley
• Dr. Nancy Padian
• Dr. William Dow
• Dr. Nicholas Jewell
• Dr. Nancy Czaicki
• Ms. Carolyn Fahey

Shinyanga Regional Medical Office
• Dr. Ntuli Kapologwe
• Dr. Ramadhan Kabala

Financial Support
• NIH/NIMH: K01MH94246, R03MH105327
• PEPFAR Food and Nutrition Technical Working Group

Ministry of Health, Gender, Community Development, Elderly and Children
• Dr. Prosper Njau

LSHTM
• Dr. Suneetha Kadiyala
Effect on MPR≥95% is concentrated in the first 3 months of the intervention

- Proportion with MPR≥95%
 - Months 0-3: 89%, 85%
 - Months 3-6*: 82%, 80%
 - Months 6-9*: 73%, 79%, 78%
 - Months 9-12*: 73%, 73%, 70%

- NAC Only
- NAC+Cash
- NAC+Food

Effect on MPR≥95% is concentrated in the first 3 months of the intervention period.

Intervention period ends

* Restricted to individuals in possession of at least one dose during the interval
Likelihood of employment, before and after ART, Kwazulu-Natal, South Africa

ITT Results: ART Adherence

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Overall (n=800)</th>
<th>Study group</th>
<th>Between-group difference<sup>a</sup> (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NAC only (n=112)</td>
<td>NAC + Cash (n=346)</td>
</tr>
<tr>
<td>Adherence to ART (6 months: end of intervention period)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPR<sup>b</sup></td>
<td>92.4%</td>
<td>85.4%</td>
<td>94.6%</td>
</tr>
<tr>
<td>MPR≥95%<sup>c</sup></td>
<td>77.9%</td>
<td>63.4%</td>
<td>83.0%</td>
</tr>
<tr>
<td>MPR≥80%<sup>d</sup></td>
<td>88.3%</td>
<td>79.5%</td>
<td>92.2%</td>
</tr>
<tr>
<td>Adherence to ART (12 months: 6 months after intervention has ended)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPR</td>
<td>87.9%</td>
<td>80.8%</td>
<td>90.9%</td>
</tr>
<tr>
<td>MPR≥95%</td>
<td>58.8%</td>
<td>52.3%</td>
<td>63.3%</td>
</tr>
<tr>
<td>MPR≥80%</td>
<td>80.8%</td>
<td>74.3%</td>
<td>84.6%</td>
</tr>
</tbody>
</table>

ART: antiretroviral therapy; MPR: medication possession ratio; CI: confidence interval
* P<0.05 **P<0.01
a. Unadusted intent-to-treat estimate using Bonferroni’s adjustment for multiple comparisons.
b. The proportion of time an individual is in possession of >1 ART dose or prescription for ART.
c. The proportion of patients with MPR ≥95% during the 0-6 month interval.
d. The proportion of patients with MPR ≥80% during the 0-6 month interval.
ITT Results: Retention in Care

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Overall (n=800)</th>
<th>Study group</th>
<th>Between-group difference</th>
<th>(95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NAC only (n=112)</td>
<td>NAC + Cash (n=346)</td>
<td>NAC + Food (n=342)</td>
</tr>
<tr>
<td>LTFU (6 months: end of intervention period)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appointment attendance</td>
<td>93.5%</td>
<td>82.6%</td>
<td>96.1%</td>
<td>94.5%</td>
</tr>
<tr>
<td>Loss to follow-up, 6 mo</td>
<td>2.6%</td>
<td>10.9%</td>
<td>0.9%</td>
<td>1.5%</td>
</tr>
<tr>
<td>LTFU (12 months: 6 months after intervention has ended)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appointment attendance</td>
<td>92.1%</td>
<td>83.4%</td>
<td>94.7%</td>
<td>92.3%</td>
</tr>
<tr>
<td>Loss to follow-up, 12 mo</td>
<td>9.5%</td>
<td>17.3%</td>
<td>6.7%</td>
<td>9.7%</td>
</tr>
</tbody>
</table>

ART: antiretroviral therapy; MPR: medication possession ratio; CI: confidence interval
* P<0.05 **P<0.01

a. Unadjusted intent-to-treat estimate using a Wald test and Bonferroni’s correction for multiple comparisons.
b. The proportion of scheduled visits completed during the 0-6 month or 0-12 month observation period.
c. The proportion of patients with no evidence of HIV primary care at 6 months, defined not seen for at least 90 days since the last appointment scheduled prior to 6 months.