TEXT MESSAGE RESPONSE PREDICTS TENOFOVIR LEVELS IN MEN WHO HAVE SEX WITH MEN TAKING PRE-EXPOSURE PROPHYLAXIS

Jill Blumenthal, Sheldon Morris, Sonia Jain, Michael Dube, Shelly Sun, Eric Ellorin, Eric Daar, Pete Anderson, Richard Haubrich, David J. Moore and the TAPIR Study Team
Disclosures

• Gilead Educational Grant Recipient
• Study drug supplied by Gilead
Pre-exposure prophylaxis (PrEP) effectiveness is strongly linked to adherence. The gold standard research method for tracking PrEP adherence is intracellular tenofovir-diphosphate (TFV-DP) concentrations, which are expensive and not commercially available. Text messaging has been shown to increase ART adherence among HIV+ individuals and is being evaluated in several PrEP demonstration projects. Response to daily, automated, SMS text messages to support adherence may be a good predictor of biological adherence measures and thus a non-biologic surrogate for PrEP adherence.

Moore et al., AIDS Care, 2012; Marcus et al. HIV Med 2014.
iTab Intervention

- iTAB= Individualized Texting for Adherence Building
- Texting content developed via focus group
 - both health behavior and “factoid” messages
- Texts sent daily at participant-preferred time
 - two-way texts—participants asked to respond
- Participants go through text training and select content
 - 2 health behavior and 5 factoid messages per week
Objectives

• To compare PrEP drug levels at weeks 12 and 48 with the proportion of daily reported pill taking by iTAB over 2 half-lives prior to study visit

• To establish the optimal level of adherence as determined by iTAB that best predicts PrEP drug level equivalent to taking ≥4 doses per week
Methods

- The TAPIR Study (RCT of Daily Text Messages To Support Adherence to PrEP In At-Risk for HIV Individuals) is a 48-week study of 398 HIV-uninfected MSM and TGW randomized to iTAB versus SoC.
- Analysis was performed on subjects on iTAB at weeks 12 and 48 with at least one TFV-DP level.
- TFV-DP concentrations were compared to the proportion of positive iTAB responses over 34 days prior to weeks 12 and 48 visit.
 - Positive iTAB response: (“A= Yes, I took my PrEP”)

<table>
<thead>
<tr>
<th>TFV-DP (fmol/punch)</th>
<th>Adherence Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥1250</td>
<td>7 doses/week</td>
</tr>
<tr>
<td>700-1249</td>
<td>4-6 doses/week</td>
</tr>
<tr>
<td>350-699</td>
<td>2-3 doses/week</td>
</tr>
<tr>
<td><350</td>
<td>0-1 doses/week</td>
</tr>
</tbody>
</table>
Statistical Analysis

• Wilcoxon rank sum test was used to compare proportions of positive iTAB response in adherence categories by TFV-DP levels

• Intraclass Correlation Coefficient (ICC) was used to assess the association between iTAB response and TFV-DP dosing levels

• ROC analyses were used to assess optimal iTAB response in predicting adequate adherence
 – Defined as TFV-DP > 719 fmol/punch (≥ 4 doses/wk)
Demographic Characteristics of Study Population (n=179)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Number (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, median (IQR)</td>
<td>33 (28-41)</td>
</tr>
<tr>
<td>Male</td>
<td>178 (99%)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>131 (74%)</td>
</tr>
<tr>
<td>Black</td>
<td>23 (13%)</td>
</tr>
<tr>
<td>Hispanic Ethnicity</td>
<td>50 (28%)</td>
</tr>
<tr>
<td>Bachelor or advanced degree</td>
<td>90 (50%)</td>
</tr>
<tr>
<td>Income > $2000/month</td>
<td>105 (59%)</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th></th>
<th>Week 12 Mean% (SD)</th>
<th>P-value</th>
<th>Week 48 Mean% (SD)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFV-DP, mean level</td>
<td>1345 (± 577)</td>
<td>--</td>
<td>1259 (± 527)</td>
<td>--</td>
</tr>
<tr>
<td>Pos iTAB responses</td>
<td>87% ± 17%</td>
<td>--</td>
<td>84% ± 20%</td>
<td>--</td>
</tr>
<tr>
<td>Pos iTAB responses by doses/wk</td>
<td></td>
<td>p=0.029</td>
<td></td>
<td>p<0.001</td>
</tr>
<tr>
<td><2 doses</td>
<td>61% ± 30%</td>
<td></td>
<td>56% ± 22%</td>
<td></td>
</tr>
<tr>
<td>2-3 doses</td>
<td>69% ± 29%</td>
<td></td>
<td>68% ± 32%</td>
<td></td>
</tr>
<tr>
<td>4-6 doses</td>
<td>88% ± 15%</td>
<td></td>
<td>83% ± 16%</td>
<td></td>
</tr>
<tr>
<td>7 doses</td>
<td>89% ± 17%</td>
<td></td>
<td>84% ± 20%</td>
<td></td>
</tr>
</tbody>
</table>

Mean% = proportion of positive iTAB responses

TFV-DP concentrations by dosing categories were associated with proportion of positive iTAB responses.
Week 48 Plot

ICC = 0.359

Proportion of positive raltegravir response

DBS TFV-DP Dosing

- <2 doses
- 2–3 doses
- 4–6 doses
- 7 doses
Results

ROC analysis suggests that the optimal cut-score of proportion of positive iTAB responses to predict protective TFV-DP levels at week 48 was 75% (specificity 52%, sensitivity 85%, PPV 91%, NPV 38%).

<table>
<thead>
<tr>
<th>iTAB $>75%$</th>
<th>TFV-DP >719</th>
<th>N (Proportion)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>109 (71%)</td>
</tr>
<tr>
<td>No</td>
<td>No</td>
<td>12 (8%)</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>11 (7%)</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>20 (13%)</td>
</tr>
</tbody>
</table>
Limitations

• iTAB adherence is self-report, but daily and relates to biologic endpoint
• iTAB responses analyzed over 2 half-lives of intracellular TFV-DP thus iTAB data only ~1 month prior to study visit
• May be variance due to high biological variation
Conclusions and Future Directions

- Overall adherence to PrEP was high among iTAB users.
- Self-reported dosing by daily text messaging is associated with TFV-DP levels.
- In settings where PrEP drug level testing is not used, text message adherence reporting could be used to prompt and assess adherence.
- iTAB is currently being evaluated in settings where adherence may (1) be more challenging and (2) need to be higher (e.g., women, transgender individuals).
Acknowledgments

Our amazing participants!

UCSD
Sheldon Morris
David Moore
Sonia Jain
Eric Ellorin
Marvin Hanashiro
Kelly Walsh
Edward Seefried
Shelly Sun
Letty Muttera
DeeDee Pacheco
Jason Young

USC
Michael Dube
Connie Funk
Ruben Lopez
Daisy Villafuerte
Luis Mendez

Harbor UCLA
Eric Daar
Katya Corado
Ramiro Correa
Michael Crump

University of Colorado
Pete Anderson
Lane Bushman

Gilead Sciences
Richard Haubrich
Keith Rawlings

Funding
CHRP-MC08-SD-700
EI-11-SD-005
AI 064086
AI 36214
1KL2TR0001444

LA BioMed
Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center

Keck School of Medicine of USC