Difference in Self-Reported Adherence on Different Recall Intervals over Time between Males and Females in MACH14 Study

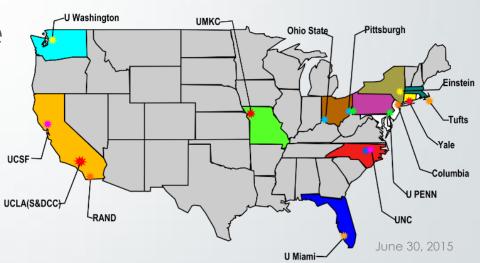
Yan Wang

Ph.D. Candidate

University of California, Los Angeles (UCLA)

2 Collaborators

Ira Wilson, Brown University Glenn Wagner, RAND Corporation Marc Rosen, Yale University Jie Shen, UCLA Robert Remien, Columbia University Judith Erlen, University of Pittsburgh Jane Simoni, University of Washington Li Cai, UCLA Honghu Liu, UCLA


Outline

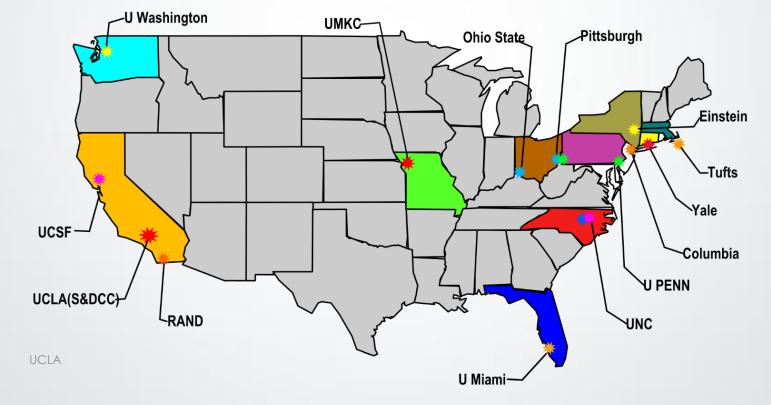
- Background
- ►IRT model
- Results
- Discussion/Limitation

UCLA

Background

- Item Response Theory (IRT) for Health Outcome
- MACH14 project
- Self-Reported Adherence

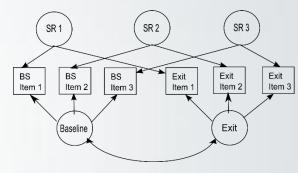
4


Item Response Theory (IRT)

- IRT was first proposed in psychometrics
 - Widely used in education
 - Relate latent trait(s) to the probability of responses
- → IRT-based models have become increasingly popular in
 - Health outcomes
 - Quality-of-life research
 - Clinical research
- Item residuals when using the same instruments over time

Data

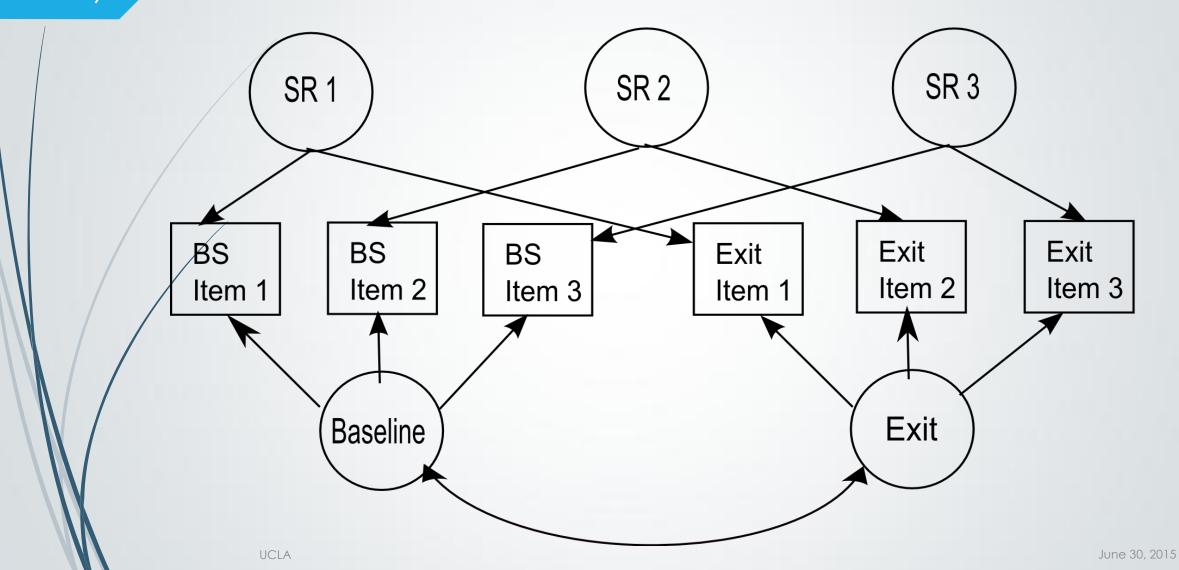
MACH14 study----a Multi-site Adherence Collaboration in HIV among 14 universities/institutes in the U.S.



June 30, 2015

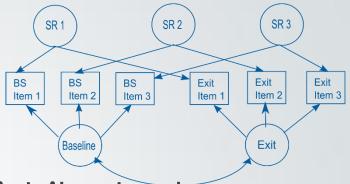
Self-reported adherence

- Self reported adherence with different recall intervals
 - One day
 - Two days
 - Three days
- Ordinal response created at baseline and exit:
 - ■0 with less than 50%
 - **■**1 − 50% − 85%
 - -2 >85% perfect adherence


Method

8

- Two-tier Item Factor Analysis Model
 - Missing observations
 - Clustering observations
 - By gender



Additional problems

- Missing is coded as "-9"
- Clustered observations within each study
- Compare the difference between genders

UCLA

Assumptions of the model

- The latent variables are normally distributed.
- Primary latent variables can be correlated
- The components of specific dimensions (adherence at different recall intervals) are mutually orthogonal.
- The primary dimension and the specific dimensions are orthogonal.
- The item responses are independent after the influence of latent variables are removed.

June 30, 201.

Results

12

- Latent trait estimation
- flexMIRT

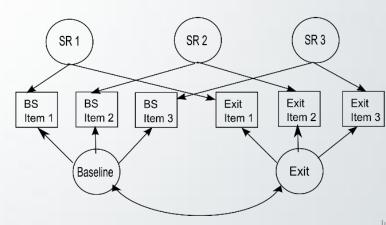
Some basic characteristics of the sample Male Female

$$-N = 1108$$

N = 484

• Mean Age = 41.3 ± 8.3

 \blacksquare Mean Age = 41.2 ± 7.7

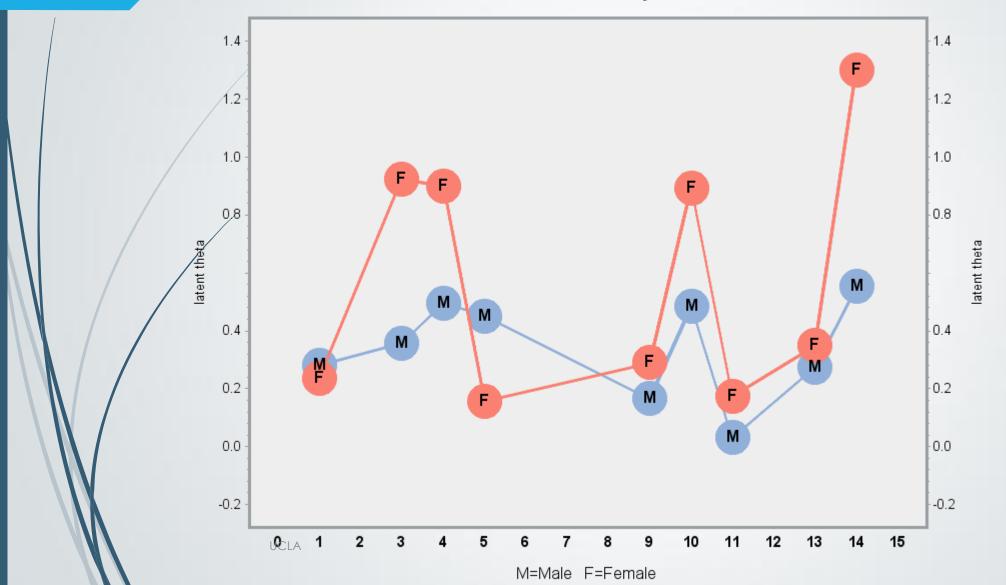

-1							
	Variable	N	Mean ± Std	Mean ± Std	N	Mean ± Std	Mean ± Std
V	BS item 1	1067	0.93 ± 0.23	1.84 ± 0.5	478	0.89 ± 0.27	1.75 ± 0.59
1	BS item 2	1003	0.93 ± 0.23	1.83 ± 0.5	426	0.9 ± 0.27	1.76 ± 0.59
	BS item 3	998	0.92 ± 0.24	1.82 ± 0.52	424	0.89 ± 0.28	1.76 ± 0.59
	Ex item 1	1052	0.91 ± 0.26	1.8 ± 0.56	470	0.86 ± 0.31	1.68 ± 0.67
	Ex item 2	986	0.91 ± 0.26	1.79 ± 0.56	421	0.89 ± 0.29	1.74 ± 0.62
	Ex item 3	987	0.91 ± 0.26	1.81 ± 0.54	422	0.89 ± 0.28	1.76 ± 0.6

Overall estimation

14

Item	a1	a2	a3	a4	a5	c1	c2
1	6.28	0	3.3	0	0	10.57	8.02
2	30.35	0	0	12.28	0	45.49	35.82
3	7.62	0	0	0	2.99	12.01	9.45
4	0	6.28	3.3	0	0	10.57	8.02
5	0	30.35	0	12.28	0	45.49	35.82
6	0	7.62	0	0	2.99	12.01	9.45

mu1	mu2	mu3	mu4	mu5
0	-0.01	0	0	0
Theta1	Theta2	Theta3	Theta4	Theta5
1				
0.78	1.11			
0	0	1		
0	0	0	1	
OUC	LA O	0	0	1



June 30, 2015

Clustered within study

15

Latent Site Estimation by Gender

By gender estimation – latent adherence

16

UCLA

2.35

901	Idei	Commit	<i>a11011</i>	Idi	CIII G	dilci	CIICC
Graded It	ems for G	roup 1: M	$ heta_1 =$	$0, \theta_2 = 1$	$\overline{.07, Var}$	$\overline{(\theta_2)}=1.$	$\overline{7,COV(heta)}$
ltem /	a 1	a 2	a 3	a 4	a 5	c 1	c 2
1	3	0	3.7	0	0	5.36	3.73
2	7.09	0	0	7.08	0	9.01	5.88
3	32.23	0	0	0	38.7	42.66	36.04
4	0	3	3.7	0	0	5.36	3.73
5	0	7.09	0	7.08	0	9.01	5.88
6	0	32.23	0	0	38.7	42.66	36.04
raded It	ems for G	iroup 2: F	$\theta_1 =$	$0,\theta_2=1$	$, Var(\theta_2)$) = 1.95,	$COV(\theta_1,$
Item	a 1	a 2	a 3	a 4	a 5	c 1	c 2
1	32.12	0	43.24	0	0	44.45	23.33
2	28.86	0	0	41.97	0	42.36	23.03
3	2.35	0	0	0	4.09	5.09	3.25
4	0	32.12	43.24	0	0	44.45	23.33
5	0	28.86	0	41.97	0	42.36	23.03

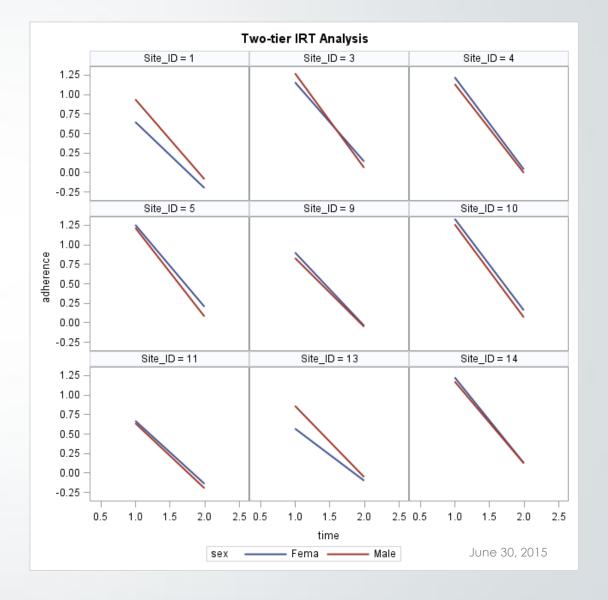
4.09 5.09

June 30, 2015

Conclusion

- The <u>difficulty</u> on report adherence based on different recall intervals between male and female
 - Male 3 days recall
 - ■Female 1 or 2 days recall

Males have advantages in short-term memory


Discussion and Limitation

18

- Discussion
- Limitation
- Future work

Compare with traditional analysis

Discussion

- The computation speed
 - With and without cluster
 - Different OS
- Assumptions

UCLA

Limitation

- Missing is not at random
- No inference about the other covariates
 - Age
 - Substance abuse
 - Ethnicity

UCLA

Possible Future Work

- MEMS data verification
- Continuous outcome vs Ordinal response
- More than two longitudinal time points
- ← Multiple imputation techniques
- Violation of the assumptions

Key references

- Cai, L. (2010). A two-tier full-information item factor analysis model with applications. Psychometrika, 75(4), 581-612.
- Hays, R. D., Morales, L. S., & Reise, S. P. (2000). Item response theory and health outcomes measurement in the 21st century. Med Care, 38(9 Suppl), II28-42.
- Liu, H., Wilson, I. B., Goggin, K., Reynolds, N., Simoni, J. M., Golin, C. E., . . . Remien, R. H. (2013). MACH14: a multi-site collaboration on ART adherence among 14 institutions. AIDS and Behavior, 17(1), 127-141.
- Wang, Y., Crane, H., & Liu, H. Conditional Maximum Likelihood Rasch Model in Data Harmonization. In: 2014 JSM Proceedings, Nonparametric Statistics Section, Boston, MA: American Statistical Association. pp. 464-473.

UCLA June 30, 2015

Acknowledgements

We would like to express our great appreciation to MACH14 investigators for their contribution to the rich data set.

