Effectiveness and cost-effectiveness of the adherence improving self-management strategy (AIMS) in HIV care in the Netherlands: a multi-site randomised controlled trial

> Marijn de Bruin Professor of Health Psychology Institute of Applied Health Sciences University of Aberdeen

Sr. research fellow Health Communication Amsterdam School of Communication Research University of Amsterdam

Background

Importance adherence known & non-adherence common

- Effect adherence interventions¹
 - 5/17 low RoB RCTs improved adherence & outcomes
 - Complex interventions and small/medium size effects
- Cost-effectiveness adherence interventions²
 - 14 RCTs, narrow perspectives
 - 2 RCTs report ICERS QALY with parameter uncertainty
 - One of these gave some clue to intervention content
- Very little promising evidence on (cost)effectiveness

1- Nieuwlaat, Cochrane 2014, 11:CD00001; 2- Oberje, de Bruin et al, 2013

Objectives (anno 2003)

- Develop an intervention that can be delivered by nurses during routine clinical care
- Intervention content based on:^{1,2,3}
 - Comprehensive literature review
 - Integration behavior (change) theory
 - Input professionals & patients
 - Use of MEMS-data

Nurses deliver the intervention after 3-day training

1- de Bruin et al. Aids Patient Care & STDS, 2005;19(6):284-94; 2- de Bruin et al., Health Psychology, 2010;29(4):421-8; 3- Oberje, de Bruin et al., BMC HSR, 2013; 13:274

Previous studies of AIMS

- Pilot-study (within-subject)¹
 - N = 26
 - Feasible, acceptable, effects on adherence
- Single center RCT²
 - N = 133
 - Powered on adherence
 - Effects on adherence (taking and timing) & viral load

1- de Bruin, Aids Pat Care STDs, 2005;19:384; 2- de Bruin, Health Psychology, 2010;29:421.

Objectives & Design

- To evaluate the effectiveness and cost-effectiveness of AIMS in a heterogeneous group of clinics and patients
- 7 clinics, 21 nurses trained to deliver the intervention
- Primary outcomes over 3 time points/visits (M5, 10, 15):
 Viral load, Cost-effectiveness, Cost-utility
- Individual patient randomisation (N = 223)
- Mixed-effects VL analyses, controlling for COVs
- Study protocol ¹; RATIONALE Table ²; Clinicaltrials.gov³

1- Oberje, de Bruin, BMC HSR, 2013;13:274; de Bruin, Psych & Health, 2015;30:8; ID NCT01429142

Sample & Context

All naïve patients and 'at-risk' treatment-experienced

• 'At risk': Detectable viral load in last 3 year & missed doses during baseline monitoring

Netherlands:

- Free health care
- Infection route sexual; intravenous drug use rare
- Visit physician and nurse every 5-6 months
- Caucasian, Caribbean, and SS African patients
- 90-95% viral suppression at given time point
- Fairly high-quality adherence support (de Bruin et al., 2009; 2010; Oberje, de Bruin, 2015)

Characteristic	Intervention group (N = 110)	Control group (N = 113)
Female, n (%)	14 (12.7%)	22 (19.5%)
Age, years, mean (SD)	45.4 (11.0)	43.4 (10.8)
Ethnicity, n (%)		
Caucasian	81 (73.6%)	63 (55.8%)
African	16 (14.5%)	21 (18.6%)
Caribbean ^a	7 (6.4%)	19 (16.8%)
Other	6 (5.5%)	10 <mark>(</mark> 8.8%)
Education, ^b n (%)		
Low	48 (43.6%)	46 (40.7%)
Medium	40 (36.4%)	39 (34.5%)
High	22 (20.0%)	28 (24.8%)
Treatment-experienced	52 (47.3%)	58 (52.7%)
Treatment-initiating	58 (52.3%)	55 (48.7%)
D4+ cell count, cells/mm³, mean (SD)		
Treatment-experienced	519.0 (222.3)	553.6 (233.8)
Treatment-initiating	379.3 (246.9)	411.8 (204.3)
Plasma HIV-RNA, mean (SD)		
Treatment-experienced	1.74 (0.61)	1.83 (0.82)
Treatment-initiating	4.83 (0.70)	4.30 (1.01)

Results

- 40% consented, no differences Y/N participants
- 5 people died
- 0% missing VL data at baseline and 4% at 3 points
- Health care consumption questionnaires: 25% missing at baseline and follow-up, 50% at intermediate points
- Completeness & fidelity AIMS delivery:
 - 85% of intervention visits attended
 - 60% of intervention elements delivered
 - Moderate quality of delivery of intervention elements

Results: effectiveness

Primary effects on viral load across 3 time points:

 Control group had 1.28 [1.04-1.52] times higher log viral load (F(1,196) = 6.40, p = .012)

Secondary effects on viral load accross 3 time points:

- Intervention group had 1.89 [0.98-3.65] higher odds of being undetectable ($\chi^2(df = 1) = 3.66$, p = .056)
- Control group had 3.08 [1.30-7.88] higher odds of 2 consecutive detectable VLs (17% versus 7%), (χ2(df = 1) = 6.39, p = .012)

Effect sizes similar for ethnic groups & exp/naive pats

Results: cost-effectiveness

- Cost AIMS per patient per year: 83 euros
- Trial-based cost-effectiveness analysis
 - Costs/1 log reduction VL
 - 88% @ €2000, 75% @ €1000, 55% @ €0
 - Costs/1 viral load 'failure' avoided
 - 90% @ €8000, 80% @ €4000, 58% @ €0

Results: cost-effectiveness

Trial-based cost-utility analysis (societal perspective)

- Costs/QALY full trial period (50% data imputed at intermediate measures): 54% probability CE
- Bias with 25% imputation acceptable, at 50% high (Gomes, Med Decis Making, 2013;33:1051)
- QoL baseline & follow-up only (25% data imputed): 80% probability CE

Additional analysis: CD4

Treatment*time interaction (contrary to viral loads), hence per time point analysis

M5: 31.0 [-8.4 to 70.4]M10: 6.6 [-46.0 to 33.0]M15: 40.4 [0.1 to 78.7]

Conclusions

- Effects on adherence (pilot and single centre RCT) and on viral load (single and multi-centre RCT) replicated
- Seems to also translate in higher CD4 at follow-up
- Trial-based cost-effectiveness analysis:
 - Viral load: strong but depends on willingness to pay
 - QALY: tricky with missing data, but positive trends
- Trial-based cost-utility: did not expect strong effects
- Markov model almost finished incl. HIV transmission¹
- Available model Goldie ²: High probability CE

1-Zaric, Med Decis Making, 2008;28:359; 2-Goldie, AM J Med, 2003;115:632

Limitations and Recommendations

Limitations:

- Delivery AIMS could be better
- Inclusion rates could be higher
- Missing data cost-utility for full trial period
- Trial based CU analysis ignores transmission risk
- Recommendations:
 - Consider adopting AIMS in routine care
 - Need more high-quality, large scale adherence trials evaluating clinical and cost-effectiveness
 - Need more replication of successful interventions rather than testing e.g., 60 different ones in single trials

Acknowledgements

Prof. J.M. Prins Prof. H.J. Hospers Prof. GJ van breukelen Prof. G Kok Dr. EJM Oberje Dr. Viechtbauer

Prof. S. Evers

Patients, nurses, and physicians in the Netherlands

Thanks M.deBruin@abdn.ac.uk